\square
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. II Year (E.C.E.) I-Semester Supplementary Examinations, May/June-2017

Basic Circuit Analysis
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A (} 10 \times 2=20 \mathrm{Marks})
$$

1. State and Explain the Volt-Ampere relationships for R, L and C components.
2. Distinguish between Independent and dependent sources.
3. State and explain Norton's theorem.
4. Find the expression for current $i(t)$ in the circuit shown below for $t>0$.

5. "The Current through an inductor cannot change instantaneously". Explain and justify the statement.
6. A coil with 1500 turns surrounds a magnetic circuit which has a reluctance of $6 \times 10^{-6} \mathrm{AT} / \mathrm{wb}$. Calculate the inductance of the coil.
7. Define power Factor.
8. Define Q-factor of a resonant circuit.
9. What is Duality? Sketch dual of simple RLC network.
10. State properties of Tieset analysis.

Part-B $(5 \times 10=50 \mathrm{Marks})$

11. a) Obtain Thevinen's equivalent network across the terminals $a \operatorname{and} b$ for the network shown below.

b) State and prove Reciprocity theorem using a simple network.
12. a) Select values of R_{1} and R_{2} in the circuit so that $\mathrm{V}_{\mathrm{R}}(0+)=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}(\operatorname{lms})=5 \mathrm{~V}$.

b) Illustrate the Steady state behaviour of Inductor and Capacitor.
13. a) Determine Average power supplied by dependent source in the circuit.

b) Find complex voltage across series combination of a 500Ω resistor and a 900 mH inductor if complex current $8 \mathrm{e}^{\mathrm{j} 3000 t} \mathrm{~mA}$ flows through two elements in series.
14. a) Derive an expression to prove that Resonant frequency is equal to geometric mean of two half power frequencies in a series resonant circuit.
b) Obtain transfer Function $G(s)$ from the pole zero plot.

15. a) Obtain Fundamental Tie-Set matrix of the network graph shown below taking tree branches a, ce into consideration.

b) Obtain dual of the network shown below.

16. a) If $I_{L}(0)=10 \mathrm{~A}$ in the circuit shown, Find $\mathrm{I}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t}>0$.

b) Determine voltage across terminals AB in the circuit shown below:

17. Write short notes on any two of the following:
a) Reactive power
b) Co-efficient of Coupling
c) ZIR and ZSR.
